Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4321, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619308

RESUMO

A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered double hydroxide (LDH) nanoclay support. The synthetic conditions were optimized so that CASCADE possessed remarkable structural (no enzyme leakage) and colloidal (excellent resistance against salt-induced aggregation) stability. The obtained composite was active in decomposition of both superoxide radical anions and hydrogen peroxide in biochemical assays revealing that the strong electrostatic interaction with the functionalized support led to high enzyme loadings, nevertheless, it did not interfere with the native enzyme conformation. In vitro tests demonstrated that ROS generated in human cervical adenocarcinoma cells were successfully consumed by the hybrid material. The cellular uptake was not accompanied with any toxicity effects, which makes the developed CASCADE a promising candidate for treatment of oxidative stress-related diseases.


Assuntos
Enzimas Imobilizadas/química , Nanocompostos/química , Espécies Reativas de Oxigênio/química , Antioxidantes/química , Coloides/química , Ativação Enzimática , Peroxidase do Rábano Silvestre/química , Cinética , Estrutura Molecular , Nanocompostos/ultraestrutura , Oxirredução , Superóxido Dismutase/química
2.
J Colloid Interface Sci ; 590: 28-37, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524718

RESUMO

Immobilization of single antioxidant enzyme systems was frequently studied in the past, however, there is a lack of reliable reports on the co-immobilization of such enzymes. Here, an antioxidant enzyme cascade involving superoxide dismutase (SOD) and horseradish peroxidase (HRP) was successfully immobilized on titania nanosheets (TNS) by the sequential adsorption method using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(styrene sulfonate) (PSS) polyelectrolyte building blocks. The development of the cascade system was based on a colloid approach, in which the charging and aggregation processes were optimized in each synthetic step. The polyelectrolyte and enzyme multilayers were built up in two different sequences at the particle interface, namely, TNS-PDADMAC-SOD-PSS-HRP and TNS-HRP-PDADMAC-SOD-PSS. The formation of the polyelectrolyte layers led to charge reversal of the carrier and the saturated PDADMAC and PSS layers stabilized the dispersions, in particular, their resistance against salt-induced aggregation was especially excellent. The results of enzymatic assays revealed that the SOD and HRP-like activities of the composites depended on the location of the enzymes in the hybrid material. The obtained compounds showed remarkable antioxidant effect and were able to simultaneously decompose superoxide radical anions and hydrogen peroxide. The cascade systems are of great promise in industrial manufacturing processes during the preparation of high-quality products without any damages by reactive oxygen species.


Assuntos
Antioxidantes , Titânio , Antioxidantes/farmacologia , Coloides , Enzimas Imobilizadas/metabolismo , Estresse Oxidativo
3.
ACS Appl Bio Mater ; 3(1): 522-530, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019395

RESUMO

An antioxidant material composed of halloysite nanotubes (HNTs), protamine sulfate polyelectrolyte (PSP), and superoxide dismutase (SOD) enzyme was prepared by self-assembly of the PSP and SOD biomacromolecules on the nanoparticulate support. The structural, colloidal and biocatalytic features were assessed. Adsorption of PSP on the oppositely charged HNT surface at appropriate loadings gave rise to charge neutralization and overcharging, which resulted in unstable and stable dispersions, respectively. The formation of a saturated PSP layer on the HNT led to the development of positive surface charge and to remarkable resistance against salt-induced aggregation making the obtained HNT-PSP hybrid suitable for immobilization of negatively charged SOD. No enzyme leakage was observed from the HNT-PSP-SOD composite indicating sufficient structural stability of this material due to electrostatic, hydrophobic, and hydrogen bonding interactions taking place between the particles and the biomacromolecules. Enzymatic assays revealed that SOD kept its functional integrity upon immobilization and showed high activity in superoxide radical dismutation. In this way, stable antioxidant bionanocomposite dispersions were obtained, which can be used as antioxidants in heterogeneous samples.

4.
Colloids Surf B Biointerfaces ; 178: 508-514, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928390

RESUMO

The development of sturdy enzyme-containing hydrophilic coatings is important for applications such as water purification or biological sensing. Here, we investigate the encapsulation of a model enzyme (beta-lactamase, BlaP) into aluminosilicate halloysite nanotubes (HNTs), and their subsequent use for the fabrication of enzymatic coatings by layer-by-layer (LbL) assembly. Highly stable suspensions of enzymatically-active halloysite nanotubes were obtained by alkaline treatment of HNTs, followed by enzyme adsorption into the lumen of the nanotubes and of poly(ethylene imine) (PEI) onto their outer surface. Bioactive thin films based on the LbL-assembly of these modified nanotubes with negatively-charged alginate provided coatings with a significantly higher enzymatic activity compared to films in which the enzyme is not incorporated in the nanotubes. The obtained results show that the encapsulation of an enzyme in halloysite nanotubes is a viable route towards stable bioactive coatings, which could be easily adapted to entrap other types of biomacromolecules with the aim of preparing thin films for air or effluent decontamination.


Assuntos
Coloides/química , Nanotubos/química , Polieletrólitos/química , beta-Lactamases/química , Iminas/química , Polietilenos/química , Propriedades de Superfície
5.
Langmuir ; 35(14): 4986-4994, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30888825

RESUMO

Charging and aggregation processes of titania nanosheets (TNS) were extensively studied in the presence of oppositely charged or like-charged polyelectrolytes in aqueous dispersions. The surface charge of the TNS was systematically varied by the pH; therefore, positive nanosheets were obtained at pH 4 and negative ones at pH 10. Strong adsorption of poly(styrene sulfonate) (PSS) of high negative line charge density on the TNS was observed at pH 4, leading to charge neutralization and reversal of the original sign of charge of the nanosheets. The adsorption of like-charged poly(diallyldimethylammonium chloride) (PDADMAC) was also feasible through a hydrophobic interaction. The predominating interparticle forces were mainly of the DLVO-type, but additional patch-charge attraction also took place in the case of PSS at low surface coverage. The TNS was found to be hydrophilic at pH 10 and no adsorption of like-charged PSS was possible because of strong electrostatic repulsion between the polyelectrolyte and the surface. The PDADMAC showed high affinity to the oppositely charged TNS surface in alkaline dispersions, giving rise to neutral and positively charged nanosheets at appropriate polyelectrolyte doses. Formation of a saturated PDADMAC layer on the TNS led to high resistance against salt-induced aggregation through the electrosteric stabilization mechanism. These results shed light on the importance of polyelectrolyte concentration, ionic strength, and charge balance on the colloidal stability of TNS, which is especially important in applications, where the nanosheets are dispersed in complex solution containing polymeric compounds and electrolytes.

6.
J Colloid Interface Sci ; 543: 174-182, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802764

RESUMO

A highly stable nanocomposite of antioxidant activity was developed by immobilization of a superoxide dismutase-mimicking metal complex on copolymer-functionalized nanoclay. The layered double hydroxide (LDH) nanoclays were synthesized and surface modification was performed by adsorbing poly(vinylpyridine-b-methacrylic acid) (PVPMAA). The effect of the adsorption on the charging and aggregation properties was investigated and the copolymer dose was optimized to obtain stable LDH dispersions. The LDH-PVPMAA hybrid particles showed high resistance against salt-induced destabilization in aqueous dispersions. Copper(II)-histamine (Cu(Hsm)2) complexes were immobilized via the formation of dative bonds between the metal ions and the nitrogen atoms of the functional groups of the copolymer adsorbed on the particles. Changes in the coordination geometry of the complex upon immobilization led to higher superoxide radical anion scavenging activity than the one determined for the non-immobilized complex. Comparison of superoxide dismutase (SOD)-like activity of the obtained hybrid LDH-PVPMAA-Cu(Hsm)2 with the nanoclay-immobilized SOD enzyme revealed that the developed composite maintained its activity over several days and was able to function at elevated temperature, while the immobilized native enzyme lost its activity under these experimental conditions. The developed nanocomposite is a promising antioxidant candidate in applications, where high electrolyte concentration and elevated temperature are applied.


Assuntos
Antioxidantes/metabolismo , Cobre/metabolismo , Histamina/metabolismo , Nanocompostos/química , Superóxido Dismutase/metabolismo , Adsorção , Antioxidantes/química , Cobre/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Histamina/química , Hidróxidos/química , Hidróxidos/metabolismo , Tamanho da Partícula , Superóxido Dismutase/química , Propriedades de Superfície
7.
J Colloid Interface Sci ; 524: 114-121, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635084

RESUMO

Highly stable dispersions of enzyme-clay nanohybrids of excellent horseradish peroxidase activity were developed. Layered double hydroxide nanoclay was synthesized and functionalized with heparin polyelectrolyte to immobilize the horseradish peroxidase enzyme. The formation of a saturated heparin layer on the platelets led to charge inversion of the positively charged bare nanoclay and to highly stable aqueous dispersions. Great affinity of the enzyme to the surface modified platelets resulted in strong horseradish peroxidase adsorption through electrostatic and hydrophobic interactions as well as hydrogen bonding network and prevented enzyme leakage from the obtained material. The enzyme kept its functional integrity upon immobilization and showed excellent activity in decomposition of hydrogen peroxide and oxidation of an aromatic compound in the test reactions. In addition, remarkable long term functional stability of the enzyme-nanoclay hybrid was observed making the developed colloidal system a promising antioxidant candidate in biomedical treatments and industrial processes.

8.
Chembiochem ; 19(4): 404-410, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144009

RESUMO

The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes.


Assuntos
Enzimas Imobilizadas/química , Nanoestruturas/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Superóxido Dismutase/química , Titânio/química , Antioxidantes/química , Antioxidantes/metabolismo , Coloides/química , Coloides/metabolismo , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Cloreto de Sódio/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície
9.
Langmuir ; 33(38): 9750-9758, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28829607

RESUMO

The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.

10.
J Phys Chem B ; 121(27): 6749-6758, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28616982

RESUMO

Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.

11.
Soft Matter ; 13(4): 842-851, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28078336

RESUMO

Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.

12.
Nanoscale ; 9(1): 369-379, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924343

RESUMO

Layered double hydroxide (LDH) nanoparticles were prepared and used as solid support for superoxide dismutase (SOD) enzymes. Structural features were studied by XRD, spectroscopic methods (IR, UV-Vis and fluorescence) and TEM, while colloidal stability of the obtained materials was investigated by electrophoresis and light scattering in aqueous dispersions. The SOD quantitatively adsorbed on the LDH by electrostatic and hydrophobic interactions and kept its structural integrity upon immobilization. The composite material showed moderate resistance against salt-induced aggregation in dispersions, therefore, heparin polyelectrolyte was used to improve the colloidal stability of the system. Heparin of highly negative line charge density strongly adsorbed on the oppositely charged hybrid particles leading to charge neutralization and overcharging at appropriate polyelectrolyte loading. Full coverage of the composite platelets with heparin resulted in highly stable dispersions, which contained only primary particles even at elevated ionic strengths. Our results indicate that the developed bionanocomposite of considerable enzymatic function is a suitable candidate for applications, wherever stable dispersions of antioxidant activity are required for instance in biomedical treatments or in chemical manufacturing processes.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas , Superóxido Dismutase/química , Eletroforese , Heparina/química , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática
13.
Chempluschem ; 82(1): 121-131, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31961513

RESUMO

The growing number of applications of layered double hydroxide (LDH) colloids demands for detailed understanding of particle aggregation processes in such samples. Tuning the colloidal stability in aqueous suspensions is essential to design stable systems or to induce controlled aggregation of these elongated particles. In this review, recent progress in this field is summarized; in particular, the charging and aggregation of LDHs of various compositions and sizes in the presence of different aggregating agents are discussed. The review focuses on the effect of monovalent salts, multivalent ions, and polyelectrolytes on the suspension stability of LDHs. The provided information will help to better understand the origin of interparticle forces responsible for the colloidal stability and to design highly stable or aggregating LDH colloids according to the desired goals in certain applications. Moreover, potential future research directions to obtain a broader picture of LDH aggregation are also suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...